Active Low-Carber Forums
Atkins diet and low carb discussion provided free for information only, not as medical advice.
Home Plans Tips Recipes Tools Stories Studies Products
Active Low-Carber Forums
A sugar-free zone


Welcome to the Active Low-Carber Forums.
Support for Atkins diet, Protein Power, Neanderthin (Paleo Diet), CAD/CALP, Dr. Bernstein Diabetes Solution and any other healthy low-carb diet or plan, all are welcome in our lowcarb community. Forget starvation and fad diets -- join the healthy eating crowd! You may register by clicking here, it's free!

Go Back   Active Low-Carber Forums > Main Low-Carb Diets Forums & Support > Low Carb Health & Technical Forums > Cholesterol, Heart Disease
User Name
Password
FAQ Members Calendar Search Gallery My P.L.A.N. Survey


Reply
 
Thread Tools Display Modes
  #1   ^
Old Wed, May-10-06, 16:05
Dodger's Avatar
Dodger Dodger is online now
Posts: 8,767
 
Plan: Paleoish/Keto
Stats: 225/167/175 Male 71.5 inches
BF:18%
Progress: 116%
Location: Longmont, Colorado
Default Nanotechnology shows early promise to treat cardiovascular disease

http://www.eurekalert.org/pub_relea...u-nse051006.php

Therapeutic design acts locally, could reduce recurrence of blocked blood vessels

NEW BRUNSWICK/PISCATAWAY, N.J. – A new tactic in the battle against cardiovascular disease – employing nanoengineered molecules called "nanolipoblockers" as frontline infantry against harmful cholesterol – is showing promise in early laboratory studies at Rutgers, The State University of New Jersey. In a paper scheduled for publication June 12 in the American Chemical Society's journal Biomacromolecules and now appearing on that journal's Web site, Rutgers researchers propose a way to combat clogged arteries by attacking how bad cholesterol triggers inflammation and causes plaque buildup at specific blood vessel sites. Their approach contrasts with today's statin drug therapy, which aims to reduce the amount of low density lipids, or LDLs ("bad" cholesterol), throughout the body.

In an ironic twist, the Rutgers approach aims to thwart a biological process that is typically beneficial and necessary. Prabhas Mogue, the principal investigator and associate professor of biomedical engineering and chemical and biochemical engineering at Rutgers, said that vascular plaque and inflammation develop when certain forms of LDL are attacked by white blood cells that scavenge cellular debris and disease agents. "While these scavengers, called macrophages, perform an essential role in keeping organisms healthy, their interaction with highly oxidized LDL molecules has quite the opposite effect," he said.

Mogue explains that macrophages accumulate large amounts of oxidized LDL and secrete chemicals that can damage the neighboring tissues and, ultimately, become fatty foam cells. The researchers' approach, therefore, is to create clusters of nanoengineered molecules that target specific receptor molecules on cell membranes and block these oxidized LDLs from attaching to macrophages.

Mogue is working with Kathryn Uhrich, Rutgers professor of chemistry and chemical biology, who is an expert at synthesizing biologically useful molecules at the nanoscale – anywhere from 10 to 100 nanometers long. The research team, which also includes graduate student Evangelia Chnari and synthetic chemists Lu Tian and Jinzhong Wang, has designed a family of nanolipoblockers, or NLBs, which compete with oxidized LDL for a macrophage's attention. The NLBs bind to receptor sites on macrophages, cutting the accumulation of oxidized LDL by as much as 75 percent.

The NLB particles are made of several engineered organic strands or chains whose ends cluster around a central point, creating a structure known as a micelle. Uhrich synthesized molecule chains with several different characteristics, such as attracting or repelling water or having a positive or negative charge. When the chains assembled into micelles, Mogue tested them for how well they blocked LDL uptake.

"We're employing the tools of nanotechnology – specifically tailoring the structure of the molecule, changing groups on the ends of the chains and closely analyzing which forms of the particles bind to the different macrophage receptors," Uhrich said. "The significant finding of our study is that the nanoscale organization matters tremendously for blockage of oxidized LDL, which opens new avenues for more specific targeting of receptors."

Mogue said that if this method proves feasible in living organisms, it could convey treatment to the site of the problem, rather than a systemic approach. "While statins are a great stride in preventing cardiovascular disease, they are not suitable for everyone," Mogue said. "Our approach also has potential to topically address the recurrence of inflammation and blockage at stent surgery sites, something that systemically active drugs have not been shown to consistently do."

Research to test the performance of NLBs in living organisms is now under way.
Reply With Quote
Sponsored Links
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off



All times are GMT -6. The time now is 13:19.


Copyright © 2000-2024 Active Low-Carber Forums @ forum.lowcarber.org
Powered by: vBulletin, Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.