View Single Post
  #43   ^
Old Mon, Apr-08-19, 08:06
Ms Arielle's Avatar
Ms Arielle Ms Arielle is online now
Senior Member
Posts: 19,219
 
Plan: atkins, carnivore 2023
Stats: 200/211/163 Female 5'8"
BF:
Progress: -30%
Location: Massachusetts
Default

FOUND IT!!!!!!! From FIBER MENACE

Quote:
Fiber is particularly hard on the duodenum, because, unlike the stomach, the duodenum isn‘t expandable, but a small, narrow, and easy-to-clog circular tube shaped like the letter C. That‘s why duodenitis (a condition identical to gastritis) and duodenal ulcer (a condition identical to gastric ulcer) strike their victims in their early twenties, twenty to thirty years ahead of the peak occurrences of gastritis and gastric ulcer.

It‘s a well-known fact among military doctors that duodenitis and duodenal ulcers are quite common among recent recruits. No surprise there—beans, legumes, whole grain cereals, whole wheat pasta, and bread make up the largest share of military rations, and young soldiers are particularly prodigious eaters after the daily grind of military life.

The duodenum possesses a few specifics that make it particularly vulnerable to obstruction with fiber. The ducts from the liver, gallbladder, and pancreas congregate into the common bile duct and terminate inside the duodenum. They supply a prodigious amount of bile (400 to 800 ml daily) and pancreatic juice (up to 1500 to 3000 ml daily). It doesn‘t take long to cause considerable damage to the liver, gallbladder, and pancreas by blocking, even partially, a considerable outflow of these fluids.

The blockage of biliary and pancreatic ducts can be purely mechanical or caused by duodenitis, an inflammation that affects the lining of the duodenum and the common duct itself. Again, the prolonged contact of a fibrous, acidified mass with the duodenal mucosa is the most likely cause of both inflammation and blockage. The conditions that follow are quite common:

Pancreatitis (inflammation of the pancreas). Besides fiber there isn‘t any other substance in human nutrition that enters the duodenum not only as is, but also expanded many times its original size. Lo and behold, the recent (17th edition) of The Merck Manual of Diagnosis and Therapy confirms this fact: “recent data indicate that obstruction of the pancreatic duct in the absence of biliary reflux can produce pancreatitis.”[11] Acute pancreatitis is quite common in toddlers, who are placed on solid food, which means loads of fiber from cereals, bread, pasta, fruits, and vegetables. The condition itself often remains undiagnosed, while its most prominent symptom—the onset of juvenile diabetes (type I), a failure to produce insulin because of acute inflammation—manifests itself almost immediately. Here is yet another ruinous aspect of fiber that strikes so early in life.
Cholecystitis (Inflammation of the gallbladder). Gallstones are the primary (90%) cause of acute (sudden, severe) and chronic cholecystitis. Gallstones are formed from concentrated bile salts when the outflow of bile from the gallbladder is blocked. The gallstones cause inflammation either by irritating the gallbladder mucosa or by obstructing the duct that connects it to the duodenum. The gallstones are the secondary factor, because before they can form, something else must first obstruct the biliary ducts. Just like with pancreatitis, that “something” is either inflammatory disease or obstruction caused by fiber.
Women are affected by gallstones far more than men, because they are more likely to maintain a “healthy” diet, which nowadays means a diet that is low in fat and high in fiber. Since the gallbladder concentrates bile pending a fatty meal, no fat in the meal means no release of bile. The longer concentrated bile remains in the gallbladder, the higher the chance for gallstones to form.

Upper (jejunum) and lower (ileum) small intestine. The duodenum transitions into the jejunum, which comprises the upper two-fifths of the small intestine. It‘s distinguished from the ileum by its larger width and thickness, slightly more pronounced mucosa structure, and deeper color, because it embodies more blood vessels.

It‘s somewhat ironic that the name jejunum is derived from the Latin fasting, because during dissection this particular segment of the small intestine was always found empty. Apparently, the fathers of anatomy, who named the internal organs, hadn‘t yet been confronted with the scourge of indigestible fiber; otherwise this particular section of the small intestine would be called intestinum repletus (filled intestine).

The final three-fifths of the small intestine are called the ileum (from Latin‘s groin, meaning near groin). The ileum is narrower (3.5–3.75 cm), has thinner walls, and is not as vascular. At the very end, the ileocal valve terminates the small intestine and prevents the content of cecum (the first section of large intestine) from spilling back into the small intestine.

One look at the small intestine, laid out inside the abdominal cavity like a tangled, convoluted garden hose, makes it apparent that this organ was designed to move fluids only, and that it‘s remarkably easy to jam with solid, undigested stuff. There is only one substance that can get down there undigested and expanded many times its size—indigestible fiber. And when that happens, here are the possible outcomes (a partial list):

Mechanical obstruction. The medical term for an undigested mass that forms inside the stomach or intestines and gets stuck there is bezoar (pronounced bee-zawr). Indigestible fiber is the only consumable substance that doesn‘t digest, and has the potential to form bezoars, which cause mechanical obstruction of the small intestine. When bezoars are lodged beyond the reach of the endoscope, abdominal surgery is the only option available to remove the obstruction. Bezoars are rare among healthy adults, but more common among children (whose intestines are comparatively tiny and underdeveloped). Old and infirm individuals, whose intestines lack the muscular tone needed to propel anything but fluids, are also vulnerable. That‘s why indigestible fiber should be taboo for children, or very old, infirm, and bed-ridden patients.
Enteritis (inflammation of the small intestine). The insides of the small intestine are covered with a pinkish mucosal membrane, superficially similar to the insides of one‘s mouth or vagina. The assimilation of digested nutrients into the bloodstream is the sole function of the intestinal mucosa. It can only assimilate nutrients dissolved in liquid chyme. It isn‘t intended to transport anything other than mildly acidic chyme (pH 6.0 to 6.5). Once inside the stomach, undigested fiber soaks up acid and enzymes like a sponge. When expanded fiber enters the small intestine, the permanent contact with the delicate mucosa causes mechanical and chemical damage, which in turn causes mucosal inflammation (enteritis). Once inflamed, the mucosa can no longer absorb the nutrients and gases formed during digestion, and the intestines expand, causing bloating and cramping, which is often accompanied by severe pain.
Crohn‘s disease. If left unchecked long enough, enteritis progresses into Crohn‘s disease. The mucosal inflammation gets so severe that it may cause intestinal obstruction—a condition similar to a stuffy nose during a cold, flu, or allergy attack, all of which cause acute inflammation of the nasal mucosa. The inflammation may happen at any point along the length of the small and large intestines, but it‘s most commonly localized in the bottom section of the ileum—the place where clogging with undigested fiber, bacterial fermentation, and fecal reflux is likeliest to occur. According to The Merck Manual of Diagnosis and Therapy: “Over the past few decades, the incidence of Crohn‘s disease has increased in the Western populations of Northern European and Anglo-Saxon ethnic derivation, third-world populations, blacks, and Latin Americans.”[12] What else happened during “the past few decades?” A substantial increase in the consumption of indigestible fiber, of course.
Hernia. When intestines protrude through the abdominal wall or inside the scrotum, they cause hernias. About 5 million Americans suffer from this unpleasant, potentially lethal condition. Coughing, straining, or lifting weights isn‘t generally enough to push the intestines so hard that they pierce the abdominal muscles or squeeze down into the scrotum (inguinal hernia). Intestinal bloating from inflammatory diseases caused by indigestible fiber is the primary force capable of expanding the intestines so much that they don‘t have enough room inside the abdominal cavity, and may ripple through the abdominal wall. The physical exertion that causes the actual herniation is a secondary force. Straining to move large stools (caused by fiber) is one of the major causes of hernia as well.
Malnutrition, and vitamin and mineral deficiencies. All the hard work that the body did breaking food down into basic nutrients—simple sugars, amino acids, fatty acids, vitamins, and minerals—is wasted unless they get assimilated into the blood-stream to become energy, electrolytes, hormones, enzymes, neurotransmitters, tissues, and other substances that keep our bodies functional and healthy. This final act of digestion takes place throughout the entire length of the small intestine, unless it‘s affected by inflammation. In this case, the essential nutrients will not digest, even if your diet contains plenty of them. Since indigestible fiber is the major source of intestinal inflammation, it is also a major cause of malnutrition and mineral and vitamin deficiencies. Pernicious anemia, which is a chronic shortage of dietary iron, folic acid, and vitamin B12, related to gastric and intestinal inflammation, is one of the most common forms of such a deficiency. It‘s also the most difficult to overcome, because regular oral supplements won‘t digest, no matter what the dose, unless the fiber is completely withdrawn and the stomach and intestines permitted to heal.
Reply With Quote