Active Low-Carber Forums
Atkins diet and low carb discussion provided free for information only, not as medical advice.
Home Plans Tips Recipes Tools Stories Studies Products
Active Low-Carber Forums
A sugar-free zone


Welcome to the Active Low-Carber Forums.
Support for Atkins diet, Protein Power, Neanderthin (Paleo Diet), CAD/CALP, Dr. Bernstein Diabetes Solution and any other healthy low-carb diet or plan, all are welcome in our lowcarb community. Forget starvation and fad diets -- join the healthy eating crowd! You may register by clicking here, it's free!

Go Back   Active Low-Carber Forums > Main Low-Carb Diets Forums & Support > Daily Low-Carb Support > General Low-Carb
User Name
Password
FAQ Members Calendar Search Gallery My P.L.A.N. Survey


 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #6   ^
Old Fri, Aug-24-12, 11:17
Nancy LC's Avatar
Nancy LC Nancy LC is offline
Experimenter
Posts: 25,865
 
Plan: DDF
Stats: 202/185.4/179 Female 67
BF:
Progress: 72%
Location: San Diego, CA
Default

New Insights Into Salt Transport in the Kidney

Quote:
ScienceDaily (Aug. 23, 2012) — Sodium chloride, better known as salt, is vital for the organism, and the kidneys play a crucial role in the regulation of sodium balance. However, the underlying mechanisms of sodium balance are not yet completely understood. Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Charité -- Universitätsmedizin Berlin and the University of Kiel have now deciphered the function of a gene in the kidney and have thus gained new insights into this complex regulation process.

In humans, the kidneys filter around 1700 liters of blood every day, of which 180 liters are collected as primary urine and ultimately one to two liters of urine are excreted. The kidneys thus wash toxic waste products out of the body, but retain some useful substances and reintroduce them into the body, thus simultaneously regulating the salt and water balance.

Molecular velcro
In the study just published by Dr. Tilman Breiderhoff, Prof. Thomas Willnow (both MDC), as well as Dr. Nina Himmerkus and Prof. Markus Bleich (both of the University of Kiel) and Dr. Dominik Müller (Charité) the focus is on the claudin-10 gene, which is expressed in a specific segment of the kidney, in Henle's loop. In the thick ascending limb of this loop, , a large part of the filtered sodium chloride, as well as calcium and magnesium are reabsorbed. The gene product under investigation, the claudin 10 protein, belongs to a family of proteins that connect the epithelial cells which cover the inner and outer surfaces of the body and stick them together like velcro. Claudins, however, also form pores, through which ions and substances are transported between the cells.
"If these transport processes are disturbed, this can lead to serious loss of function of the kidneys," Dr. Breiderhoff explained. As example he cited various human hereditary diseases in which either absorption of table salt (Bartter syndrome) or of calcium and magnesium (familial hypomagnesemia with hypercalciuria and nephrocalcinosis - FHHNC) is disturbed. The second disease is characterized by a lack of magnesium in the blood and an excess of calcium in the urine, which leads to calcification of the kidneys. It is caused by mutations in one of two genes (claudin 16 or claudin 19), which also belong to the gene family of the claudins.
The researchers have now demonstrated in mice that the claudin-10 gene is involved in the reabsorption of salt in the kidney. If the gene in the kidney is deactivated, the reabsorption of sodium is impaired, but the reabsorption of calcium and magnesium is increased. The consequence is that the mice have elevated magnesium levels in the blood, and excess calcium is deposited in the kidney. Simultaneously, the urine volume is increased because the kidneys of the mice cannot reabsorb enough water, a sign that the recovery of salt is disturbed.


I think what happens is you lose your molecular velcro when you lose too much sodium on a VLC diet. Then you don't recycle important minerals as you should.

So address the sodium issue first, then potassium and magnesium.
Reply With Quote
 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off



All times are GMT -6. The time now is 08:52.


Copyright © 2000-2024 Active Low-Carber Forums @ forum.lowcarber.org
Powered by: vBulletin, Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.